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ARTICLE INFO ABSTRACT

Edited by Jing M. Chen Poverty is a pervasive global issue that adversely affects human well-being. Traditional socioeconomic censuses

are time-consuming and resource-intensive, suffering from temporal delays, while reliance on nighttime light

Keywords: data with low spatial resolution is insufficient for fine-scale identification of impoverished regions. Furthermore,
Poverty the spatial heterogeneity of nighttime light in different urban functional zones has been overlooked. To address
SDGSAT-1

these shortcomings, we proposed a novel approach by integrating high-resolution SDGSAT-1 nighttime light data
(10 m) with urban functional zoning data using a spatial overlay tool. A random forest model was then applied to
predict county-level poverty identification in Guangdong, China. For comparative validation, traditional NPP-
VIIRS nighttime light data (500 m) were also incorporated. This method effectively explored the nonlinear
relationship between nighttime light, urban functional zones, and the multidimensional poverty index (MPI,
serving as the dependent variable). Our experiments demonstrate that the integration of urban functional zoning
with nighttime light moderately improves the accuracy of poverty estimates. Among the models tested, the one
considering functional zoning-based indicators of “number of light pixels” and “sum of pixel light values”
increased the correlation coefficient by 0.0158 compared to the model without considering these indicators.
Additionally, comparative analysis revealed that high-resolution data from SDGSAT-1 exhibited a better fit with
the MPI when integrated with functional zoning-based indicators. Specifically, the correlation coefficient of this
combination was 0.0086 higher than that of traditional NPP-VIIRS data. This highlights that SDGSAT-1 can
delineate the boundaries between dark and light regions more precisely, leading to a more accurate reflection of
regional poverty levels. Our findings facilitate fine-scale poverty estimation across large regions. This approach
can inform policy design, such as dynamic optimization of resource allocation based on poverty estimates, thus
enabling timely and accurate poverty alleviation efforts.
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1. Introduction (Putri et al., 2022; Puttanapong et al., 2022; Su et al., 2017). Since

relative poverty can be considered a multidimensional event, the

Poverty is a pervasive worldwide phenomenon that poses significant
challenges to human well-being (Ma et al., 2019; Meng et al., 2020;
Rybnikova and Portnov, 2020). The Sustainable Development Goals
proposed by the United Nations place a particular emphasis on the
eradication of poverty. Poverty directly affects people’s quality of life,
social stability, and the development of countries (Cecchini et al., 2022;
Pandey et al., 2022; Xu et al., 2021a). While a number of countries
around the world have successfully addressed the issue of absolute
poverty, there is still a need to continuously alleviate relative poverty

development of quantitative models to measure relative poverty is a
crucial and ongoing area of research (Hutasavi and Chen, 2022; Lin
et al., 2022). The insights gained from these models can offer mean-
ingful theoretical guidance for the design of poverty eradication projects
(Jean et al., 2016; Wang et al., 2012).

The multidimensional poverty index (MPI) emerged as a key quan-
titative tool, capturing poverty’s complexity through a three-level
framework that goes beyond traditional income-based measures. Ac-
cording to the authoritative definition of the United Nations
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Development Programme (UNDP), poverty is essentially a dynamic
three-dimensional system consisting of health deprivation, lack of edu-
cation, and decline in quality of life (Gillis et al., 2001). This multidi-
mensional conception encompasses not only the superficial dimension of
income but also the restrictions on personal development opportunities
(Schimmel, 2009). Notably, Alkire and Foster (2011) proposed the
Alkire-Foster multidimensional poverty measurement theory, which
was developed by selecting ten indicators from three dimensions.
Hanandita et al. (2016) investigated the poverty condition in Indonesia
according to earnings, health, and education. Liu and Xu (2016)
developed a multidimensional indicator system based on the theory of
sustainable livelihood framework, including financial, human, natural,
and social capital elements, to assess rural poverty in China. However,
the collection of traditional socioeconomic information is time-
consuming, and such statistical data are subject to delays that prevent
timely updates on the poverty conditions (Asher et al., 2021; Elvidge
et al., 2022; Liu et al., 2022; Tan et al., 2020).

Given its low cost and broad temporal and spatial coverage, night-
time light remote sensing has been demonstrated to effectively charac-
terize timely and fine-scale socioeconomic conditions (Jia et al., 2024; Li
et al., 2019; Zhang et al., 2019). For example, Chen et al. (2021a)
employed a machine learning-based method to spatialize gross domestic
product based on point of interest (POI) and nighttime light information.
Bennett and Smith (2017) conducted a literature review and found that
multitemporal nighttime light data are an appropriate proxy for socio-
economic indicators. In other fields, such as urban crime, Lee et al.
(2024) investigated the relationship between nighttime crime and light
values through univariate and multivariate analyses. Their findings
showed that burglary exhibited the strongest correlation (R-squared
value = 0.60) with nighttime light values, which emphasizes the utility
of nighttime light data in urban crime analysis. Collectively, these
studies have documented robust correlations between socioeconomic
indicators and nighttime light information, while expanding their
innovative applications in urban security monitoring and other areas.
Current research trends indicate that nighttime light data are increas-
ingly recognized as a crucial spatial analysis tool for understanding
complex social issues.

A growing body of research has employed nighttime light data to
identify impoverished regions (Coscieme et al., 2017; Li et al., 2020).
For example, Elvidge et al. (2009) constructed a poverty index (PI) by
dividing population count data by DMSP-OLS light brightness. They
estimated worldwide poverty conditions based on the correlation be-
tween PI and DMSP-OLS light intensity. Yu et al. (2015) and Pan and Hu
(2018) developed an average light index (ALI) and an average nighttime
light index (ANLI), respectively, using NPP-VIIRS nighttime light data.
They validated the correlation between these indices and actual poverty
distribution through linear regression models to identify the spatial
distribution of impoverished counties. However, these traditional
nighttime remote sensing satellites are subject to the limitations of
oversaturation and blooming effect (Guo et al., 2023b; Levin et al., 2020;
Qiu et al., 2024; Zheng et al., 2023). Furthermore, the resolution of
DMSP-OLS and NPP-VIIRS datasets is only 1000 m and 500 m, respec-
tively, which is insufficient to support the urgent priority of accurate
poverty alleviation (Hall et al., 2023; Zhao et al., 2022; Zhuo et al.,
2018).

Interestingly, the Sustainable Development Goals Science Satellite 1
(SDGSAT-1), operated in 2021, provides data with high spatial resolu-
tion (10 m) and a large swath width of 300 km (Guo et al., 2023a). Its
large swath width enables faster and more comprehensive coverage of
large areas compared to traditional satellites (e.g., Landsat with 185 km
swath width), thereby reducing temporal costs. The high resolution of
SDGSAT-1 facilitates the identification of light distribution and micro-
variations within small rural settlements and towns. This feature over-
comes the limitations of traditional data in fine-scale studies and miti-
gates blooming effects (Li et al., 2023a; Liu et al., 2024a). For example,
SDGSAT-1 has demonstrated potential in extracting urban roads (Chang
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et al.,, 2022; Wang et al., 2025b), identifying wetland (Xiang et al.,
2023), exploring the spatial distribution of population (Duan et al.,
2024; Liu et al., 2023a), investigating nighttime vitality (Xie et al.,
2024), and evaluating light and air pollution (Lin et al., 2023; Liu et al.,
2025). Moreover, the nighttime light product from SDGSAT-1 can be
used to monitor poverty condition (Yu et al., 2023). Consequently,
SDGSAT-1 is designed to provide more detailed information for socio-
economic research.

It is not necessarily the case that areas with low levels of nighttime
brightness are experiencing poverty. Therefore, some research has
addressed the limitations of nighttime light by combining multi-source
geospatial data. For example, Shi et al. (2020) integrated topography,
vegetation indices, POI, with nighttime light to recognize impoverished
regions in Chongging. Hu et al. (2022) combined POI, road network, and
nighttime light to identify impoverished villages in Yunyang County. Li
et al. (2023b) proposed a big data poverty indicator (BDPI) using
nighttime light, POI, and house prices, which has the potential to replace
the MPIL. Niu et al. (2020) employed housing prices and nighttime light
information to quantify urban poverty based on random forests. Li et al.
(2024a) also considered the fusion of nighttime remote sensing and POI
data for county-level regional development mapping in Wuling, China.

Nevertheless, previous studies have paid insufficient attention to the
heterogeneity of nighttime brightness within different urban functional
zones. Although some studies have attempted to combine multi-source
data such as POI and road networks, they would benefit from a more
systematic integration with urban functional zones. Liu et al. (2024b)
revealed significant differences in lighting intensity and spectral char-
acteristics across urban functional zones through the combination of
field measurements and SDGSAT-1 nighttime light data. Lu et al. (2024)
proposed a methodology for estimating electricity consumption by
integrating Luojia 1-01 nighttime light data with urban functional
zoning data. This method can accurately distinguish the power con-
sumption patterns of industrial, residential, and other economic sectors.
These studies demonstrate the effectiveness of urban functional zoning
data in distinguishing the nighttime brightness of different economic
sectors. While there is a paucity of studies that have explored the utility
of urban functional zoning data in enhancing poverty estimation accu-
racy or fully leveraged their potential to characterize daytime economic
vitality, related research has confirmed the capability of urban func-
tional zoning to quantify spatiotemporal heterogeneity in human ac-
tivities (Chen et al., 2022b; Cui et al., 2023; Du et al., 2024). This
provides a more scientific basis for improving poverty estimation
methods.

To tackle the above weaknesses, this study was the first to integrate
high-resolution SDGSAT-1 data with urban functional zoning data to
explore their role in enhancing poverty estimation accuracy. The urban
functional zoning data provide valuable insight into daytime socioeco-
nomic activities and are beneficial for a more accurate differentiation in
nighttime brightness characteristics across diverse economic sectors.
This advantage enables a more comprehensive poverty estimation. For
example, while secondary sector is vital to socioeconomic growth, the
nighttime brightness of industrial parks may be relatively low.
Furthermore, some public service facilities such as hospitals and li-
braries, which operate mainly during daytime hours, exhibit relatively
low nighttime brightness. The incorporation of urban functional zoning
data will enhance the comprehensiveness of poverty estimation. To this
end, the non-linear association between the MPI and urban functional
zoning-based indicators of nighttime light will be investigated.

The remainder of this paper is organized as follows: Section 2 in-
troduces the study area, data sources, and the associated preprocessing
steps. Section 3 describes the calculation method of the MPI, the con-
struction of nighttime light indicators based on urban functional zoning,
and the modeling process of random forest model. Section 4 presents the
calculation results of the MPIL, poverty estimation performance based on
nighttime light and urban functional zoning, and identifies the optimal
model through tenfold cross validation. Section 5 discusses the
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differences in poverty estimation results across different data sources,
analyzes the advantages and shortcomings of the proposed method, and
offers policy recommendations. Section 6 summarizes the contributions
of this study and outlines future research directions.

2. Data
2.1. Case study

Our research focuses on Guangdong Province of China, which com-
prises 122 counties within 21 prefecture-level cities. This province is
situated in the southernmost part of the Chinese mainland. Since 1989,
Guangdong has consistently ranked among the top provinces in China in
terms of GDP. However, Guangdong Province has developed unevenly,
with a concentration of impoverished counties in the eastern, western,
and northern mountainous areas. These regions are affected by their
location and topographical conditions, resulting in a notable lag in so-
cioeconomic development compared with the Pearl River Delta. Fig. 1
illustrates the considerable variation in county-level GDP across the
whole province.

2.2. Socioeconomic indicators

In accordance with the sustainable livelihoods framework estab-
lished by previous studies and the availability of data, this study adopted
14 socioeconomic indicators from diverse aspects: economy, health,
education, livelihood, and environment (Table 1) (Chen et al., 2022a; Li
et al., 2024a; Pan and Hu, 2018; Pokhriyal and Jacques, 2017). These
indicators were integrated to construct the MPI, which serves as a
comprehensive tool for identifying impoverished counties.

Data acquisition is limited by timeliness constraints. According to the
Guangdong Statistical Yearbook and Population Census data, Guang-
dong Province experienced no substantial socioeconomic structural
changes during 2020-2022. Therefore, the study period for socioeco-
nomic indicators was set to this period, which can balance data avail-
ability and research timeliness while ensuring the robustness of the MPI.

24°N

22°N
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Table 1
Socioeconomic indicators of MPIL.
Dimension Indicator Source Year Resolution
Economy Gross regional Guangdong 2020 -
product Statistical
Proportion of Yearbook 2020 -
secondary and
tertiary industries
Density of POI of AutoNavi 2022 -
companies and Map
enterprises
Health Medical and health Guangdong Social 2020 -
institutions Statistical
Yearbook
Education Years of schooling Guangdong 2020 -
Provincial
Population Census
Livelihood Density of scientific, POI of AutoNavi 2022 -
educational, and Map
cultural service
facilities
Housing area per Guangdong 2020 -
capita Provincial
Population Census
Road density OpenStreetMap 2022 -
Average house price Anjuke and Loupan 2022 -
Platforms
Density of living and ~ POI of AutoNavi 2022 -
leisure service Map
facilities
Density of 2022 -
transportation
service facilities
Environment  Average slope NASA DEM - 30 m
Average terrain https://www.geo - 1000 m
relief doi.ac.cn
Average rainfall National - 1000 m
Meteorological

Information Center

2.3. SDGSAT-1 data

The nighttime light products of SDGSAT-1 (Fig. 2a) are characterized
by multiple bands (RGB and panchromatic) and high spatiotemporal
resolution (Table 2), which can provide finer information for
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Fig. 1. County-level GDP of Guangdong in 2022.
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(b) NPP-VIIRS

Fig. 2. SDGSAT-1 and NPP-VIIRS data in Guangdong.

Table 2
Comparison between SDGSAT-1 and NPP-VIIRS.
SDGSAT-1 NPP-VIIRS
Spatial resolution 10 m 500 m
Swath width 300 km 3000 km
Availability 2021-now 2012-now

socioeconomic monitoring (Yu et al., 2023). Since the original product
of SDGSAT-1 still exhibits noise, noise removal and radiometric cali-
bration were conducted in accordance with previous research. To
distinguish between noises and regular pixels, appropriate thresholds
were established based on the distribution patterns of the noises. Spe-
cifically, the image was first binarized. Then, a customized filter was
devised to eliminate the noisy regions with pixel connectivity less than 5
in the binary image, while retaining the regions with connectivity
greater than 5. Further details regarding noise removal and radiometric
calibration can be found in the articles of Liu et al. (2024a) and Zhang
et al. (2022).

Image processing techniques, including de-blooming algorithms and
functions in image processing software, are commonly employed to
tackle the oversaturation and blooming effect (Bai et al., 2023). Our
study mainly adopted the threshold truncation method to mitigate the
blooming effect and noise by setting thresholds. Noise removal can
significantly reduce stripe and salt-and-pepper noise while minimizing
information loss. In addition, radiometric calibration can convert orig-
inal digital values into physical quantities, providing an accurate basis
for quantitative analysis. Collectively, these processes indirectly alle-
viate both oversaturation and blooming phenomena, thereby enhancing
data quality and enabling detailed information extraction (Liu et al.,
2023b; Wang et al., 2025a; Zhang et al., 2022).

2.4. NPP-VIIRS data

The NPP-VIIRS data (Fig. 2b) were collected from the joint NASA/
NOAA programs (Sanchez de Miguel et al., 2020; Stokes and Roman,
2022; Zhao et al., 2020). A well-calibrated and preprocessed product in
2022 was obtained from the National Earth System Scientific Data
Platform (https://geodata. nnu.edu.cn/). This widely-used product was
generated through the fusion of data from NPP-VIIRS and DMSP-OLS
(Chen et al., 2021b). First, the enhanced vegetation index (EVI) was
used to adjust the DMSP-OLS nighttime light data to mitigate saturation

effects and amplify variations in light intensity. Then, a convolutional
neural network (CNN)-based autoencoder model was developed to
extract high-order image features from the adjusted DMSP-OLS data and
map them to the feature space of NPP-VIIRS data, which enables the
simulation of nighttime light data similar to NPP-VIIRS data. This pro-
cess addressed discrepancies between the satellite sensors in terms of
resolution, radiometric calibration, and temporal coverage, creating a
nighttime light dataset with a long time span and consistency.

2.5. Urban functional zoning data

In this study, the spatial heterogeneity of nighttime light within
different urban functional zones was carefully considered. For this
purpose, the urban functional zoning product in 2018 was obtained from
the China Urban Land Use Mapping Research Group (Gong et al., 2020).
This dataset classifies cities into five types: residential, commercial, in-
dustrial, transportation, and public management and utilities (Fig. 3).
These classifications were generated through a random forest algorithm
integrating multi-source geospatial data (Sentinel-2 imagery, POIs, and
nighttime lights).

3. Method

First, the MPI was established based on the socioeconomic indicators
presented in Table 1, and several nighttime light indicators (Table S1)
were calculated within each urban functional zone. Second, a correla-
tion assessment was performed between all nighttime light indicators
and the MPI at a county scale. The highly relevant indicators were then
subjected to multicollinearity diagnosis. Third, a series of random forest
models were constructed with different combinations of the remaining
nighttime light indicators. Tenfold cross validation was used to identify
the optimal combinations. The results were further compared with those
of the traditional methods to examine the performance of our method
(Fig. 4).

3.1. Multidimensional poverty index

The initial step was to standardize the 14 socioeconomic indicators
presented in Table 1. Subsequently, the data were reduced in dimension
through principal component analysis, and the KMO and Bartlett’s as-
sessments were performed. A KMO value exceeding 0.6 signifies that the
principal component analysis is effective. The variance contribution
ratio of each component was divided by the cumulative contribution
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Fig. 3. Urban functional zoning in Guangdong.
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Fig. 4. Poverty estimation using nighttime light and urban functional zoning.

ratio to determine the weight of each indicator. Ultimately, county-level
MPIs were calculated to reflect the poverty condition of each county as
follows:

14
MPI = Zwi X X; 1)
o1

where x; is the score of the i-th metric; w; is the weight for the i-th metric.

3.2. Urban functional zoning-based nighttime light indicators

It has been demonstrated by previous research that the fusion of
nighttime light and urban land use information can substantially
improve the spatialization of socioeconomic indicators (Chen et al.,
2016; Lu et al., 2024; Wei et al., 2021). Accordingly, urban functional
zoning data were employed to complement daytime information on
socioeconomic activities. By considering the nighttime light features of
diverse urban functional zones, it is expected that a more comprehensive

estimation of poverty can be achieved. In accordance with previous
outcomes (Li et al., 2021; Luo et al., 2022; Xu et al., 2021¢; Yin et al.,
2021; Zheng et al., 2024), twelve categories of nighttime light charac-
teristics were quantified from four perspectives (central tendency,
dispersion degree, distribution characteristic, and spatial characteristic)
(Table S1).

First, the county-level nighttime light characteristics of the entire
study area (i.e., nighttime light indicators without considering urban
functional zoning) were calculated using the SDGSAT-1 nighttime light
data in isolation. Subsequently, the nighttime light characteristics
within each urban functional zone were calculated at the county level.
This was achieved by combining urban functional zoning data with
nighttime light using a spatial overlay tool (i.e., nighttime light in-
dicators considering urban functional zoning). To facilitate comparison
with the SDGSAT-1 data, the same operation was applied to the NPP-
VIIRS nighttime light product.
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3.3. Random forest

Random forest is a powerful machine learning technique that can
accurately perform data regression and classification tasks, as well as
address missing values (Chen et al., 2021a; Hu et al., 2022; Niu et al.,
2020). The random forest model is based on multiple decision trees,
each constructed independently, which allows for the effective solution
of high-dimensional and nonlinear problems by combining all the de-
cision trees. Therefore, it can effectively handle missing data, non-
equilibrium conditions, and multicollinearity in the dataset. It offers
advantages such as resistance to overfitting, fast computation, and the
ability to achieve usable results without fine-tuning parameters. In
several poverty estimation comparison studies, random forest has out-
performed other machine learning models (Chen et al., 2025; Muneton-
Santa and Manrique-Ruiz, 2023; Yin et al., 2021; Zheng et al., 2024).

In this study, a series of random forest models were constructed to
identify the nonlinear relationship between the MPI (dependent vari-
able) and nighttime light characteristics (SDGSAT-1/NPP-VIIRS) (inde-
pendent variables). A tenfold cross validation rule was employed to
examine the effectiveness of these models. This operation was iterated
ten times, and the mean validation metrics of different models were
calculated to identify the optimal combination of independent variables.
To assess the model’s predictive capability and generalization perfor-
mance, five metrics, including correlation coefficient, average absolute
error, root mean square error, relative absolute error, and relative
square root error, were used.

4. Results
4.1. MPI

The KMO score is 0.846, and the significance of Bartlett’s assessment
is less than 0.05. These results suggest that there is a moderate to high
correlation between the variables, which makes them suitable for
principal component analysis. The associated weighting outcomes are
presented in Table 3.

Accordingly, the county-level MPIs in Guangdong Province were
calculated using Eq. (1). To provide a more illustrative representation of
the geographical distribution of poverty conditions, a natural break rule
(Jenks) was employed to categorize the MPI values as five levels: very
low (0.00-0.20), low (0.21-0.25), moderate (0.26-0.35), high
(0.36-0.45), and very high (0.46-0.8) (Fig. 5). Specifically, a lower MPI
level indicates a more severe poverty condition. In accordance with the
findings of previous studies, the counties with a very low MPI level were
classified as impoverished counties, and the same applies to the poverty
level (Pan and Hu, 2018; Xu et al., 2021b; Yin et al., 2021).

The MPI results are found to be consistent with the actual poverty
condition. In particular, the peripheral counties in Guangdong Province

Table 3
Weighting for socioeconomic indicators.
Indicator Attribute ~ Weight
Gross regional product + 0.0989
Percentage of secondary and tertiary industries + 0.0576
Density of companies and enterprises + 0.0844
Medical and health institutions + 0.0781
Years of schooling + 0.0638
Density of scientific, educational, and cultural service + 0.0687
facilities - 0.0551
Housing area per capita + 0.0751
Road density + 0.0802
Average house price + 0.0683
Density of living and leisure service facilities + 0.0744
Density of transportation service facilities - 0.0687
Average slope - 0.0721
Average terrain relief + 0.0541

Average rainfall
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are facing greater challenges in combating poverty. The impoverished
counties were typically situated in the eastern and northern parts of this
province, including Maoming, Yunfu, Zhaoqing, Yangjiang, Shaoguan,
and Heyuan, which are geographically more remote. In contrast, the
more developed counties clustered in Guangzhou, Shenzhen, and
Foshan, which are the cores of Guangdong’s socioeconomic
development.

4.2. Poverty estimation based on nighttime light and urban functional
zoning

For the sake of clarity, the nighttime light indicators calculated
without urban functional zoning are referred to as “basic indicators”
hereafter. First, a correlation analysis was conducted between all in-
dicators and the MPI to exclude those that did not exhibit a significant
correlation. Second, a multicollinearity diagnosis was performed on the
remaining basic indicators, which resulted in the exclusion of those with
significant multicollinearity (VIF > 10).

To test the hypothesis that the basic indicators are significantly
correlated with the MPI, a Pearson correlation analysis was conducted.
The null hypothesis (no correlation, p = 0) was evaluated using a two-
tailed significance test. Fig. 6 illustrates the outcomes of the hypothe-
sis testing for the correlation between the selected basic indicators and
the MPI. The Pearson correlation analysis revealed a significant corre-
lation between all basic indicators and the MPI, thereby allowing us to
reject the null hypothesis (p = 0) at the 5 % significance level.

After performing multicollinearity diagnosis and correlation anal-
ysis, the retained basic indicators were combined with each single
functional zoning-based nighttime light indicator. The performance of
these different combinations was quantified through tenfold cross vali-
dation (Table 4). The results demonstrate that the models considering
the following five additional indicators performed better than the model
using only the basic indicators.

First, the “sum of pixel light values” can depict the degree of socio-
economic development at night and shows a strong correlation with
poverty conditions. Second, the “median of pixel light values” is less
susceptible to the influence of outliers and provides a robust measure of
central tendency. This makes it an effective tool for capturing the
disparity between wealth and poverty. Third, the “mode of pixel light
values” reflects the most common brightness levels and thus reveals the
type of socioeconomic activity that dominates this region. Fourth, the
“number of light pixels” is correlated with population and economic
size, reflecting the coverage of socioeconomic activities. Fifth, the “local
Moran index” measures the heterogeneity of the spatial distribution of
light brightness, which is also a key indicator of impoverished counties.
Notably, compared with the “average light index” that reflects the
average brightness, the “sum of pixel light values” and “number of light
pixels” can better capture the light distribution characteristics within
different functional zones. Our results show that the correlation co-
efficients of the models considering the “sum of pixel light values” and
“number of light pixels” are as high as 0.9463 and 0.9450, respectively.

The five high-performance indicators derived from the above
screening were subsequently combined in pairs (Table 5). Results show
that the model combining the basic indicators with the “sum of pixel
light values” and “number of light pixels” indicators achieves the highest
accuracy. Specifically, a region may exhibit a high total light value
concentrated in a limited number of pixels (e.g., urban cores), while a
large number of light pixels may indicate broader spatial coverage of
economic activities (e.g., suburban areas). A moderate total light value,
accompanied by an abundance of light pixels, may indicate dispersed
moderate development. Conversely, a high total light value with sparse
light pixels could signify centralized development. The combination of
these two indicators enables the model to simultaneously capture both
the overall intensity and spatial coverage of nighttime illumination.
Consequently, this combination achieves a correlation coefficient that is
0.0158 higher than the result obtained using only the basic indicator.
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Fig. 5. Spatial distribution of MPI level in Guangdong.
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Fig. 6. Correlation heatmap with Pearson’s r and significance levels (* p < 0.05, ** p < 0.01).

Linear regression analysis was performed to examine the association
between the model’s predicted outcomes and the MPI. Fig. 7a presents
the scatter plot and regression line (y = 0.8002x + 0.0515, R% = 0.8767)
for the model using only SDGSAT-1 basic indicators. The high R? value
demonstrates a strong alignment between model predictions and MPI
values, indicating an accurate representation of actual poverty
conditions.

For the optimal model identified through tenfold cross validation,
which combines the SDGSAT-1 basic indicators with the “sum of pixel
light values” and “number of light pixels” indicators, Fig. 7b shows
improved performance (y = 0.7750x + 0.0547, R = 0.8949). This

model exhibits a stronger explanatory power for the variations in the
MPI, accounting for approximately 89.49 % of the changes. These results
further validate the statistically significant correlation between the
combined model’s predictions and the MPL. It indicates that the com-
bined model, which contains more comprehensive nighttime light in-
formation, aligns better with the actual situation.

To enhance the clarity of the optimal model (integrating SDGSAT-1
basic indicators, the “sum of pixel light values”, and the “number of
light pixels™), a SHAP (Shapley Additive Explanation) value analysis was
conducted. As illustrated in Fig. 8, the three most influential positive
indicators are the “average value of pixel light values” (SHAP value =
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Table 4
Results of combining basic indicators with each single functional zoning-based
nighttime light indicator (SDGSAT-1).
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Table 5
Results of combining basic indicators with multiple functional zoning-based
nighttime light indicators (SDGSAT-1).

Combining Correlation Average Root Relative Relative Combining Correlation Average Root Relative Relative
basic coefficient absolute mean absolute square basic coefficient absolute mean absolute square
indicators error square error (%) root error indicators error square error (%) root error
with the error (%) with the error (%)
following following
functional functional
zoning-based zoning-based
indicator indicators
- 0.9342 0.0362 0.0482 36.3673 35.9438 - 0.9342 0.0362 0.0482 36.3673 35.9438
Sum of pixel 0.9463 0.0338 0.0457 33.9339 34.1121 Sum of pixel 0.9500 0.0311 0.0443 31.2270 33.0876
light values light values
Number of 0.9450 0.0302 0.0458 30.3055 34.1383 &
light pixels Number of
Local Moran 0.9432 0.0332 0.0458 33.3027 34.1586 light pixels
Index Number of 0.9476 0.0301 0.0465 30.2585 34.6855
Mode of pixel 0.9383 0.0358 0.0468 35.9778 34.9232 light pixels
light values &
Median of 0.9366 0.0357 0.0480 35.8438 35.7864 Local
pixel light Moran Index
values Median of 0.9467 0.0340 0.0471 34.1653 35.1382
Minimum of 0.9329 0.0363 0.0486 36.4173 36.2555 pixel light
pixel light values &
values Local
Variance of 0.9322 0.0364 0.0497 36.5301 37.1129 Moran Index
pixel light Sum of pixel 0.9447 0.0328 0.0472 32.9131 35.2194
values light values
Average light 0.9312 0.0356 0.0495 35.7766 36.9047 &
index Local
Average value 0.9312 0.0356 0.0495 35.7766 36.9047 Moran Index
of pixel light Number of 0.9446 0.0307 0.0464 30.8255 34.5934
values light pixels
Maximum of 0.9304 0.0362 0.0502 36.2905 37.4314 &
pixel light Median of
values pixel light
Standard 0.9292 0.0363 0.0510 36.4265 38.0573 values
deviation of Mode of pixel 0.9433 0.0325 0.0466 32.5916 34.7313
pixel light light values
values &
Range of pixel 0.9291 0.0369 0.0504 37.0475 37.5693 Local
light values Moran Index
Note (same below): The first row shows the results obtained using only the basic I\ﬁ;ﬂj ;rixoefls 0-9420 0:0320 0-0470 32.1080 35.0535
indicators. The numbers in bold indicate that the results are superior to those &
obtained using only the basic indicators. Basic indicators refer to those calcu- Mode of
lated using only nighttime light data, while functional zoning-based indicators pixel light
are calculated by integrating nighttime light data with urban functional zoning values
data. Sum of pixel 0.9408 0.0332  0.0478  33.3008  35.6890
light values
&
0.02241), “sum of pixel light values in the commercial zone” (SHAP Mode of
value = 0.01788), and “sum of pixel light values” (SHAP value = pixel light
0.01548). These indicators collectively reflect the overall economic Val‘@
conditions and highlight areas of robust development. In contrast, the s‘ll?“h(:fvillﬁls 0.9402 0-0343 00483 34.4575 36.0206
“sum of pixel light values in the public management and utilities zone” 8 &
(SHAP value = 0.00859), “number of light pixels in the public man- Median of
agement and utilities zone” (SHAP value = 0.00810), and “sum of pixel pixel light
light values in the residential zone” (SHAP value = 0.00793) compen- values
Mode of pixel 0.9341 0.0360 0.0498 36.1308 37.1894

sate for the relatively low nighttime light values in these functional
zones, thereby effectively capturing their daytime economic activity
levels. This integrated spatiotemporal analysis enables the model to
effectively interpret both daytime and nighttime economic patterns,
thereby enhancing the clarity of poverty estimation.

For further comparison, the NPP-VIIRS data were also utilized to
estimate poverty conditions in Guangdong Province. All steps were
identical to those described above for the SDGSAT-1 data. The results
presented in Tables S2 and S3 further confirm the validity of the com-
bination of the basic indicators, the “sum of pixel light values”, and
“number of light pixels”.

light values
&
Median of
pixel light
values

5. Discussion
5.1. Comparison of poverty estimation results

To further validate our method, a spatial comparison between the
outcomes derived from the nighttime light and the MPI was conducted
(Fig. 9). The results were reclassified in accordance with the MPI levels
depicted in Fig. 5, and counties with values below 0.2 were considered
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impoverished counties. Overall, the impoverished counties recognized
via our method are broadly consistent with the results derived from the
MPI. The discrepancies between the two are typically distributed in the
northern and western parts of Guangdong. Specifically, the impov-
erished counties that were predicted to be non-impoverished were
mainly Qujiang, Yangxi, and Xinxing, while the non-impoverished
counties that were predicted to be impoverished were mainly Leizhou,
Xingning, and Meixian.

The calculation of the MPI is highly dependent on reliable statistical
data. Although statistical yearbooks provide valuable data for socio-
economic analyses, they are limited by their update frequency and sta-
tistical units. In economically developed regions with impoverished sub-
regions, these limitations may result in an incomplete and potentially
inaccurate estimation. In contrast, nighttime light data, as one of the
informative indicators for measuring socioeconomic activities at a fine
scale, better capture the differences in human activities at night. Addi-
tionally, the incorporation of functional zoning-based indicators is ad-
vantageous for reflecting the spatial heterogeneity in economic
activities and social services across various urban functional zones. For
example, industrial zones may exhibit low nighttime brightness due to
limited operations at night but generate significant economic output
during the day. Residential and public management and utilities zones
(e.g., schools, hospitals), which typically have lower nighttime light

intensity but are critical for quality of life, align with MPI dimensions
such as education and health. Our functional zoning-based indicators (e.
g., “sum of pixel light values in the industrial zone”) complement these
daytime economic activities. Consequently, the use of these indicators
enables the indirect capture of crucial information on daytime socio-
economic activities, thereby facilitating a more comprehensive poverty
estimation.

Among the four methods, the results derived from the combination of
the SDGSAT-1 basic indicators with the functional zoning-based in-
dicators exhibited the greatest consistency with the MPI. For instance,
Fogang was incorrectly identified as an impoverished county in all three
other results. In fact, Fogang exhibits spatial mixing of industrial and
residential zones in some regions. In the model using NPP-VIIRS basic
indicators, the “sum of pixel light values”, and “number of light pixels”,
the benefits of functional zoning were undermined by the coarse reso-
lution of NPP-VIIRS, which hindered effective identification of mixed
land use patterns. Conversely, the model using only SDGSAT-1 basic
indicators can leverage its 10 m resolution to detect small-scale light
variations. However, this model lacks functional zoning information,
making it difficult to distinguish low-brightness industrial zones from
actual impoverished regions. Similarly, the model using only NPP-VIIRS
basic indicators tends to misclassify Fogang’s scattered public service
facilities as impoverished regions due to their low nighttime brightness,



Z. Chen et al.

Remote Sensing of Environment 329 (2025) 114925

Observed non-impoverished
predicted as non-impoverished

] I

Observed non-impoverished
predicted as impoverished

Observed impoverished

Observed impoverished
predicted as non-impoverished

predicted as impoverished

= ]

Fig. 9. Comparison between MPI and the results of nighttime light: (a) using only SDGSAT-1 basic indicators; (b) using SDGSAT-1 basic indicators, the “sum of pixel
light values”, and “number of light pixels”; (c) using only NPP-VIIRS basic indicators; (d) using NPP-VIIRS basic indicators, the “sum of pixel light values”, and

“number of light pixels”.

leading to incorrect classifications.

Furthermore, the poverty level results obtained through the above
four methods were compared (Fig. 10). In all four results, there is a
noticeable decrease in poverty level from the center to the periphery of
Guangdong Province, with the northern part of the province exhibiting a
relatively low poverty level. The results obtained without considering
the functional zoning-based indicators (Fig. 10a and Fig. 10c) were
unable to identify the impoverished counties in Maoming. In compari-
son, the results including the functional zoning-based indicators
(Fig. 10b and Fig. 10d) were more consistent with the results of the MPI,
which further supports the reasonableness of our proposed method.

Our further investigation has revealed that the inclusion of urban
functional zoning can alleviate this limitation associated with high-
resolution nighttime light data. Functional zoning-based indicators
effectively differentiate brightness characteristics across economic sec-
tors, thereby enabling adequate reflection of daytime activity areas.
After considering these new indicators (Fig. 9b and Fig. 10b), some areas
that were initially misclassified as impoverished counties were cor-
rected. For counties with concentrated nighttime light in specific areas,
the remaining parts with low nighttime light can be characterized by the
“number of light pixels” and “sum of pixel light values” within different
functional zones. These two additional indicators provide essential in-
formation on the extent of light coverage and the sum of light values for
each functional zone. Nevertheless, for large areas with concentrated
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development (e.g., Dongguan City without subordinate counties), the
aforementioned issues may still lead to misclassification of poverty
levels.

Finally, the performance of the SDGSAT-1 data with the NPP-VIIRS
data regarding poverty estimation was compared. Without considering
functional zoning-based indicators, SDGSAT-1 (Fig. 10a) identified
fewer counties with medium, high, and very high poverty levels than
NPP-VIIRS (Fig. 10c). For example, the results from SDGSAT-1 showed
lower poverty levels in Panyu District of Guangzhou and Guangming
District of Shenzhen. The high resolution of SDGSAT-1 enables it to
capture finer nighttime light variations, but it may also be oversensitive
to low-brightness areas (e.g., parks, industrial zones). In contrast, NPP-
VIIRS suffers from blooming effect, and its low resolution leads to
widespread overestimation of brightness values (e.g., urban center
brightness diffusing to suburban areas), thereby underestimating the
number of impoverished counties. This discrepancy indicates that while
SDGSAT-1’s high resolution enhances the accuracy of poverty identifi-
cation, its sensitivity to low-light areas requires auxiliary calibration
with functional zoning data. NPP-VIIRS, despite its high temporal res-
olution and low computational cost, is limited in mixed-functional zones
due to insufficient spatial precision. Therefore, the combination of these
two data sources offers a more comprehensive perspective for poverty
estimation.

After incorporating functional zoning-based indicators, NPP-VIIRS
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light pixels”; (c) using only NPP-VIIRS basic indicators; (d) using NPP-VIIRS basic indicators, the “sum of pixel light values”, and “number of light pixels”.

identified more impoverished counties accurately (Fig. 9c and Fig. 9d),
with the correlation coefficient of its model increasing by 0.0129.
However, NPP-VIIRS still struggles to delineate the edges between dark
and light regions precisely due to inherent limitations (Li et al., 2024b;
Ma et al., 2014; Ni et al., 2021; Zhang et al., 2015). Therefore, its
improvement in correlation coefficient was 0.0029 lower than that of
SDGSAT-1. These results indicate that functional zoning indicators
enhance poverty estimation for both datasets. Nevertheless, the models
demonstrated higher performance when integrated with the higher-
resolution SDGSAT-1 data.

5.2. Advantages and shortcomings of this study

The above comparisons support the validity of the methodology
proposed in this study. Compared with the approaches that rely solely on
nighttime light data, this methodology has carefully accounted for
regional spatial heterogeneity. The reasonableness of the poverty esti-
mation results can be improved by incorporating urban functional
zoning-based indicators. In summary, the proposed methodology offers
two key advantages. First, the use of high spatiotemporal resolution
SDGSAT-1 nighttime light data provides a solution to the delays and
coarse units of statistical data. Second, the inclusion of urban functional
zoning information allows for a more accurate distinction between the
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light brightness characteristics of different economic sectors, thereby
providing a more comprehensive approach to poverty estimation.

In light of our findings, three policy recommendations can be made
for the alleviation of poverty. First, it is imperative that local govern-
ments accurately identify regions experiencing relative poverty and
devise differentiated poverty reduction strategies based on regional
characteristics. In particular, it is essential to strengthen the sustainable
development and risk-resistance capacity of economically disadvan-
taged regions, including those in the eastern, western, and northern
parts of Guangdong. For impoverished counties with single-functional
zoning, priority should be given to investing in infrastructure for char-
acteristic industries. Second, local governments need to implement a
long-term dynamic tracking system to enhance the responsiveness and
accuracy of poverty alleviation policies. For example, in similar poverty
zones identified by the model (e.g., Liannanyaozu in Qingyuan and
Ruyuanyaozu in Shaoguan), the effectiveness of characteristic industries
(e.g., eco-tourism) in poverty alleviation can be evaluated by integrating
changes in nighttime light intensity with industrial income data. Finally,
local governments can establish an early warning mechanism for
poverty trends in accordance with the methodology of this study. By
identifying poverty clusters through modeling results and spatial auto-
correlation analysis, emergency industrial funds can be allocated regu-
larly. Implementing early intervention measures based on poverty
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estimation results can prevent the phenomenon of “returning to
poverty” in Guangdong Province.

It should also be acknowledged that the poverty estimation model
developed in this study has some shortcomings, as the urban functional
zoning data employed is solely based on the 2018 mapping results. First,
the data on transportation areas could not be incorporated into the
model due to a considerable number of missing values. It would be
beneficial for future studies to obtain more complete information. Sec-
ond, using county as the unit of analysis may not fully reflect the dif-
ferences in sub-regional development within the county. Finally, the
acquisition and updating of functional zoning data face significant
challenges (Hu et al., 2024; Tang et al., 2022; Xiong et al., 2025; Zhang
et al., 2025). These challenges include high costs and processing com-
plexities for high-resolution data, which results in delayed updates, ill-
defined boundaries, and incomplete spatial coverage. A finer unit,
such as grid-scale resolution, could be employed in future attempts to
gain a more complete picture of poverty conditions. This could be
complemented by more timely data (e.g., mobile phone signaling data)
to quantify daytime population mobility and economic activity hotspots.

6. Conclusions

This study aims to explore the potential of integrating high-
resolution SDGSAT-1 data with urban functional zoning data to esti-
mate poverty. It addresses two critical challenges: the insufficient
timeliness of traditional socioeconomic statistical data and the limited
ability of coarse-resolution remote sensing products to characterize
spatial heterogeneity. The results show that the model combining
functional zoning-based indicators of “sum of pixel light values” and
“number of light pixels” demonstrated the highest degree of
effectiveness.

Specifically, this research contributes to the literature in two distinct
aspects. First, the SDGSAT-1 data with a resolution of 10 m were
employed for poverty estimation, which can strengthen the reliability of
the fitting outcomes. The high temporal resolution of these data pro-
vides an opportunity for long-term dynamic monitoring on a large scale,
which is beneficial for accurately alleviating poverty and promoting
urban-rural integration. Second, an integrated use of nighttime light and
urban functional zoning effectively distinguishes the nighttime light
characteristics across diverse economic sectors. This novel combination
can account for regional spatial heterogeneity and offer an ideal basis for
the accurate identification of impoverished regions. In conclusion, our
findings have great potential to support fine-scale poverty estimation
over a wide area. Although county-scale models may exhibit biases in
large areas with concentrated development, future studies will involve
acquiring more timely data (e.g., mobile phone signaling data), adopting
a more refined grid scale, and expanding the study area to urban ag-
glomerations such as the Yangtze River Delta and Beijing-Tianjin-Hebei
region. These efforts aim to provide valuable insights for targeted
poverty alleviation, enhance poverty monitoring, and support evidence-
based policy-making.
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