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A B S T R A C T

Poverty is a pervasive global issue that adversely affects human well-being. Traditional socioeconomic censuses 
are time-consuming and resource-intensive, suffering from temporal delays, while reliance on nighttime light 
data with low spatial resolution is insufficient for fine-scale identification of impoverished regions. Furthermore, 
the spatial heterogeneity of nighttime light in different urban functional zones has been overlooked. To address 
these shortcomings, we proposed a novel approach by integrating high-resolution SDGSAT-1 nighttime light data 
(10 m) with urban functional zoning data using a spatial overlay tool. A random forest model was then applied to 
predict county-level poverty identification in Guangdong, China. For comparative validation, traditional NPP- 
VIIRS nighttime light data (500 m) were also incorporated. This method effectively explored the nonlinear 
relationship between nighttime light, urban functional zones, and the multidimensional poverty index (MPI, 
serving as the dependent variable). Our experiments demonstrate that the integration of urban functional zoning 
with nighttime light moderately improves the accuracy of poverty estimates. Among the models tested, the one 
considering functional zoning-based indicators of “number of light pixels” and “sum of pixel light values” 
increased the correlation coefficient by 0.0158 compared to the model without considering these indicators. 
Additionally, comparative analysis revealed that high-resolution data from SDGSAT-1 exhibited a better fit with 
the MPI when integrated with functional zoning-based indicators. Specifically, the correlation coefficient of this 
combination was 0.0086 higher than that of traditional NPP-VIIRS data. This highlights that SDGSAT-1 can 
delineate the boundaries between dark and light regions more precisely, leading to a more accurate reflection of 
regional poverty levels. Our findings facilitate fine-scale poverty estimation across large regions. This approach 
can inform policy design, such as dynamic optimization of resource allocation based on poverty estimates, thus 
enabling timely and accurate poverty alleviation efforts.

1. Introduction

Poverty is a pervasive worldwide phenomenon that poses significant 
challenges to human well-being (Ma et al., 2019; Meng et al., 2020; 
Rybnikova and Portnov, 2020). The Sustainable Development Goals 
proposed by the United Nations place a particular emphasis on the 
eradication of poverty. Poverty directly affects people’s quality of life, 
social stability, and the development of countries (Cecchini et al., 2022; 
Pandey et al., 2022; Xu et al., 2021a). While a number of countries 
around the world have successfully addressed the issue of absolute 
poverty, there is still a need to continuously alleviate relative poverty 

(Putri et al., 2022; Puttanapong et al., 2022; Su et al., 2017). Since 
relative poverty can be considered a multidimensional event, the 
development of quantitative models to measure relative poverty is a 
crucial and ongoing area of research (Hutasavi and Chen, 2022; Lin 
et al., 2022). The insights gained from these models can offer mean
ingful theoretical guidance for the design of poverty eradication projects 
(Jean et al., 2016; Wang et al., 2012).

The multidimensional poverty index (MPI) emerged as a key quan
titative tool, capturing poverty’s complexity through a three-level 
framework that goes beyond traditional income-based measures. Ac
cording to the authoritative definition of the United Nations 
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Development Programme (UNDP), poverty is essentially a dynamic 
three-dimensional system consisting of health deprivation, lack of edu
cation, and decline in quality of life (Gillis et al., 2001). This multidi
mensional conception encompasses not only the superficial dimension of 
income but also the restrictions on personal development opportunities 
(Schimmel, 2009). Notably, Alkire and Foster (2011) proposed the 
Alkire-Foster multidimensional poverty measurement theory, which 
was developed by selecting ten indicators from three dimensions. 
Hanandita et al. (2016) investigated the poverty condition in Indonesia 
according to earnings, health, and education. Liu and Xu (2016)
developed a multidimensional indicator system based on the theory of 
sustainable livelihood framework, including financial, human, natural, 
and social capital elements, to assess rural poverty in China. However, 
the collection of traditional socioeconomic information is time- 
consuming, and such statistical data are subject to delays that prevent 
timely updates on the poverty conditions (Asher et al., 2021; Elvidge 
et al., 2022; Liu et al., 2022; Tan et al., 2020).

Given its low cost and broad temporal and spatial coverage, night
time light remote sensing has been demonstrated to effectively charac
terize timely and fine-scale socioeconomic conditions (Jia et al., 2024; Li 
et al., 2019; Zhang et al., 2019). For example, Chen et al. (2021a)
employed a machine learning-based method to spatialize gross domestic 
product based on point of interest (POI) and nighttime light information. 
Bennett and Smith (2017) conducted a literature review and found that 
multitemporal nighttime light data are an appropriate proxy for socio
economic indicators. In other fields, such as urban crime, Lee et al. 
(2024) investigated the relationship between nighttime crime and light 
values through univariate and multivariate analyses. Their findings 
showed that burglary exhibited the strongest correlation (R-squared 
value = 0.60) with nighttime light values, which emphasizes the utility 
of nighttime light data in urban crime analysis. Collectively, these 
studies have documented robust correlations between socioeconomic 
indicators and nighttime light information, while expanding their 
innovative applications in urban security monitoring and other areas. 
Current research trends indicate that nighttime light data are increas
ingly recognized as a crucial spatial analysis tool for understanding 
complex social issues.

A growing body of research has employed nighttime light data to 
identify impoverished regions (Coscieme et al., 2017; Li et al., 2020). 
For example, Elvidge et al. (2009) constructed a poverty index (PI) by 
dividing population count data by DMSP-OLS light brightness. They 
estimated worldwide poverty conditions based on the correlation be
tween PI and DMSP-OLS light intensity. Yu et al. (2015) and Pan and Hu 
(2018) developed an average light index (ALI) and an average nighttime 
light index (ANLI), respectively, using NPP-VIIRS nighttime light data. 
They validated the correlation between these indices and actual poverty 
distribution through linear regression models to identify the spatial 
distribution of impoverished counties. However, these traditional 
nighttime remote sensing satellites are subject to the limitations of 
oversaturation and blooming effect (Guo et al., 2023b; Levin et al., 2020; 
Qiu et al., 2024; Zheng et al., 2023). Furthermore, the resolution of 
DMSP-OLS and NPP-VIIRS datasets is only 1000 m and 500 m, respec
tively, which is insufficient to support the urgent priority of accurate 
poverty alleviation (Hall et al., 2023; Zhao et al., 2022; Zhuo et al., 
2018).

Interestingly, the Sustainable Development Goals Science Satellite 1 
(SDGSAT-1), operated in 2021, provides data with high spatial resolu
tion (10 m) and a large swath width of 300 km (Guo et al., 2023a). Its 
large swath width enables faster and more comprehensive coverage of 
large areas compared to traditional satellites (e.g., Landsat with 185 km 
swath width), thereby reducing temporal costs. The high resolution of 
SDGSAT-1 facilitates the identification of light distribution and micro- 
variations within small rural settlements and towns. This feature over
comes the limitations of traditional data in fine-scale studies and miti
gates blooming effects (Li et al., 2023a; Liu et al., 2024a). For example, 
SDGSAT-1 has demonstrated potential in extracting urban roads (Chang 

et al., 2022; Wang et al., 2025b), identifying wetland (Xiang et al., 
2023), exploring the spatial distribution of population (Duan et al., 
2024; Liu et al., 2023a), investigating nighttime vitality (Xie et al., 
2024), and evaluating light and air pollution (Lin et al., 2023; Liu et al., 
2025). Moreover, the nighttime light product from SDGSAT-1 can be 
used to monitor poverty condition (Yu et al., 2023). Consequently, 
SDGSAT-1 is designed to provide more detailed information for socio
economic research.

It is not necessarily the case that areas with low levels of nighttime 
brightness are experiencing poverty. Therefore, some research has 
addressed the limitations of nighttime light by combining multi-source 
geospatial data. For example, Shi et al. (2020) integrated topography, 
vegetation indices, POI, with nighttime light to recognize impoverished 
regions in Chongqing. Hu et al. (2022) combined POI, road network, and 
nighttime light to identify impoverished villages in Yunyang County. Li 
et al. (2023b) proposed a big data poverty indicator (BDPI) using 
nighttime light, POI, and house prices, which has the potential to replace 
the MPI. Niu et al. (2020) employed housing prices and nighttime light 
information to quantify urban poverty based on random forests. Li et al. 
(2024a) also considered the fusion of nighttime remote sensing and POI 
data for county-level regional development mapping in Wuling, China.

Nevertheless, previous studies have paid insufficient attention to the 
heterogeneity of nighttime brightness within different urban functional 
zones. Although some studies have attempted to combine multi-source 
data such as POI and road networks, they would benefit from a more 
systematic integration with urban functional zones. Liu et al. (2024b)
revealed significant differences in lighting intensity and spectral char
acteristics across urban functional zones through the combination of 
field measurements and SDGSAT-1 nighttime light data. Lu et al. (2024)
proposed a methodology for estimating electricity consumption by 
integrating Luojia 1–01 nighttime light data with urban functional 
zoning data. This method can accurately distinguish the power con
sumption patterns of industrial, residential, and other economic sectors. 
These studies demonstrate the effectiveness of urban functional zoning 
data in distinguishing the nighttime brightness of different economic 
sectors. While there is a paucity of studies that have explored the utility 
of urban functional zoning data in enhancing poverty estimation accu
racy or fully leveraged their potential to characterize daytime economic 
vitality, related research has confirmed the capability of urban func
tional zoning to quantify spatiotemporal heterogeneity in human ac
tivities (Chen et al., 2022b; Cui et al., 2023; Du et al., 2024). This 
provides a more scientific basis for improving poverty estimation 
methods.

To tackle the above weaknesses, this study was the first to integrate 
high-resolution SDGSAT-1 data with urban functional zoning data to 
explore their role in enhancing poverty estimation accuracy. The urban 
functional zoning data provide valuable insight into daytime socioeco
nomic activities and are beneficial for a more accurate differentiation in 
nighttime brightness characteristics across diverse economic sectors. 
This advantage enables a more comprehensive poverty estimation. For 
example, while secondary sector is vital to socioeconomic growth, the 
nighttime brightness of industrial parks may be relatively low. 
Furthermore, some public service facilities such as hospitals and li
braries, which operate mainly during daytime hours, exhibit relatively 
low nighttime brightness. The incorporation of urban functional zoning 
data will enhance the comprehensiveness of poverty estimation. To this 
end, the non-linear association between the MPI and urban functional 
zoning-based indicators of nighttime light will be investigated.

The remainder of this paper is organized as follows: Section 2 in
troduces the study area, data sources, and the associated preprocessing 
steps. Section 3 describes the calculation method of the MPI, the con
struction of nighttime light indicators based on urban functional zoning, 
and the modeling process of random forest model. Section 4 presents the 
calculation results of the MPI, poverty estimation performance based on 
nighttime light and urban functional zoning, and identifies the optimal 
model through tenfold cross validation. Section 5 discusses the 
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differences in poverty estimation results across different data sources, 
analyzes the advantages and shortcomings of the proposed method, and 
offers policy recommendations. Section 6 summarizes the contributions 
of this study and outlines future research directions.

2. Data

2.1. Case study

Our research focuses on Guangdong Province of China, which com
prises 122 counties within 21 prefecture-level cities. This province is 
situated in the southernmost part of the Chinese mainland. Since 1989, 
Guangdong has consistently ranked among the top provinces in China in 
terms of GDP. However, Guangdong Province has developed unevenly, 
with a concentration of impoverished counties in the eastern, western, 
and northern mountainous areas. These regions are affected by their 
location and topographical conditions, resulting in a notable lag in so
cioeconomic development compared with the Pearl River Delta. Fig. 1
illustrates the considerable variation in county-level GDP across the 
whole province.

2.2. Socioeconomic indicators

In accordance with the sustainable livelihoods framework estab
lished by previous studies and the availability of data, this study adopted 
14 socioeconomic indicators from diverse aspects: economy, health, 
education, livelihood, and environment (Table 1) (Chen et al., 2022a; Li 
et al., 2024a; Pan and Hu, 2018; Pokhriyal and Jacques, 2017). These 
indicators were integrated to construct the MPI, which serves as a 
comprehensive tool for identifying impoverished counties.

Data acquisition is limited by timeliness constraints. According to the 
Guangdong Statistical Yearbook and Population Census data, Guang
dong Province experienced no substantial socioeconomic structural 
changes during 2020–2022. Therefore, the study period for socioeco
nomic indicators was set to this period, which can balance data avail
ability and research timeliness while ensuring the robustness of the MPI. 2.3. SDGSAT-1 data

The nighttime light products of SDGSAT-1 (Fig. 2a) are characterized 
by multiple bands (RGB and panchromatic) and high spatiotemporal 
resolution (Table 2), which can provide finer information for 

Fig. 1. County-level GDP of Guangdong in 2022.

Table 1 
Socioeconomic indicators of MPI.

Dimension Indicator Source Year Resolution

Economy Gross regional 
product

Guangdong 
Statistical 
Yearbook

2020 –

Proportion of 
secondary and 
tertiary industries

2020 –

Density of 
companies and 
enterprises

POI of AutoNavi 
Map

2022 –

Health Medical and health 
institutions

Guangdong Social 
Statistical 
Yearbook

2020 –

Education Years of schooling Guangdong 
Provincial 
Population Census

2020 –

Livelihood Density of scientific, 
educational, and 
cultural service 
facilities

POI of AutoNavi 
Map

2022 –

Housing area per 
capita

Guangdong 
Provincial 
Population Census

2020 –

Road density OpenStreetMap 2022 –
Average house price Anjuke and Loupan 

Platforms
2022 –

Density of living and 
leisure service 
facilities

POI of AutoNavi 
Map

2022 –

Density of 
transportation 
service facilities

2022 –

Environment Average slope NASA DEM – 30 m
Average terrain 
relief

https://www.geo 
doi.ac.cn

– 1000 m

Average rainfall National 
Meteorological 
Information Center

– 1000 m
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socioeconomic monitoring (Yu et al., 2023). Since the original product 
of SDGSAT-1 still exhibits noise, noise removal and radiometric cali
bration were conducted in accordance with previous research. To 
distinguish between noises and regular pixels, appropriate thresholds 
were established based on the distribution patterns of the noises. Spe
cifically, the image was first binarized. Then, a customized filter was 
devised to eliminate the noisy regions with pixel connectivity less than 5 
in the binary image, while retaining the regions with connectivity 
greater than 5. Further details regarding noise removal and radiometric 
calibration can be found in the articles of Liu et al. (2024a) and Zhang 
et al. (2022).

Image processing techniques, including de-blooming algorithms and 
functions in image processing software, are commonly employed to 
tackle the oversaturation and blooming effect (Bai et al., 2023). Our 
study mainly adopted the threshold truncation method to mitigate the 
blooming effect and noise by setting thresholds. Noise removal can 
significantly reduce stripe and salt-and-pepper noise while minimizing 
information loss. In addition, radiometric calibration can convert orig
inal digital values into physical quantities, providing an accurate basis 
for quantitative analysis. Collectively, these processes indirectly alle
viate both oversaturation and blooming phenomena, thereby enhancing 
data quality and enabling detailed information extraction (Liu et al., 
2023b; Wang et al., 2025a; Zhang et al., 2022).

2.4. NPP-VIIRS data

The NPP-VIIRS data (Fig. 2b) were collected from the joint NASA/ 
NOAA programs (Sanchez de Miguel et al., 2020; Stokes and Roman, 
2022; Zhao et al., 2020). A well-calibrated and preprocessed product in 
2022 was obtained from the National Earth System Scientific Data 
Platform (https://geodata. nnu.edu.cn/). This widely-used product was 
generated through the fusion of data from NPP-VIIRS and DMSP-OLS 
(Chen et al., 2021b). First, the enhanced vegetation index (EVI) was 
used to adjust the DMSP-OLS nighttime light data to mitigate saturation 

effects and amplify variations in light intensity. Then, a convolutional 
neural network (CNN)-based autoencoder model was developed to 
extract high-order image features from the adjusted DMSP-OLS data and 
map them to the feature space of NPP-VIIRS data, which enables the 
simulation of nighttime light data similar to NPP-VIIRS data. This pro
cess addressed discrepancies between the satellite sensors in terms of 
resolution, radiometric calibration, and temporal coverage, creating a 
nighttime light dataset with a long time span and consistency.

2.5. Urban functional zoning data

In this study, the spatial heterogeneity of nighttime light within 
different urban functional zones was carefully considered. For this 
purpose, the urban functional zoning product in 2018 was obtained from 
the China Urban Land Use Mapping Research Group (Gong et al., 2020). 
This dataset classifies cities into five types: residential, commercial, in
dustrial, transportation, and public management and utilities (Fig. 3). 
These classifications were generated through a random forest algorithm 
integrating multi-source geospatial data (Sentinel-2 imagery, POIs, and 
nighttime lights).

3. Method

First, the MPI was established based on the socioeconomic indicators 
presented in Table 1, and several nighttime light indicators (Table S1) 
were calculated within each urban functional zone. Second, a correla
tion assessment was performed between all nighttime light indicators 
and the MPI at a county scale. The highly relevant indicators were then 
subjected to multicollinearity diagnosis. Third, a series of random forest 
models were constructed with different combinations of the remaining 
nighttime light indicators. Tenfold cross validation was used to identify 
the optimal combinations. The results were further compared with those 
of the traditional methods to examine the performance of our method 
(Fig. 4).

3.1. Multidimensional poverty index

The initial step was to standardize the 14 socioeconomic indicators 
presented in Table 1. Subsequently, the data were reduced in dimension 
through principal component analysis, and the KMO and Bartlett’s as
sessments were performed. A KMO value exceeding 0.6 signifies that the 
principal component analysis is effective. The variance contribution 
ratio of each component was divided by the cumulative contribution 

Fig. 2. SDGSAT-1 and NPP-VIIRS data in Guangdong.

Table 2 
Comparison between SDGSAT-1 and NPP-VIIRS.

SDGSAT-1 NPP-VIIRS

Spatial resolution 10 m 500 m
Swath width 300 km 3000 km
Availability 2021–now 2012–now
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ratio to determine the weight of each indicator. Ultimately, county-level 
MPIs were calculated to reflect the poverty condition of each county as 
follows: 

MPI =
∑14

i=1
wi × xi (1) 

where xi is the score of the i-th metric; wi is the weight for the i-th metric.

3.2. Urban functional zoning-based nighttime light indicators

It has been demonstrated by previous research that the fusion of 
nighttime light and urban land use information can substantially 
improve the spatialization of socioeconomic indicators (Chen et al., 
2016; Lu et al., 2024; Wei et al., 2021). Accordingly, urban functional 
zoning data were employed to complement daytime information on 
socioeconomic activities. By considering the nighttime light features of 
diverse urban functional zones, it is expected that a more comprehensive 

estimation of poverty can be achieved. In accordance with previous 
outcomes (Li et al., 2021; Luo et al., 2022; Xu et al., 2021c; Yin et al., 
2021; Zheng et al., 2024), twelve categories of nighttime light charac
teristics were quantified from four perspectives (central tendency, 
dispersion degree, distribution characteristic, and spatial characteristic) 
(Table S1).

First, the county-level nighttime light characteristics of the entire 
study area (i.e., nighttime light indicators without considering urban 
functional zoning) were calculated using the SDGSAT-1 nighttime light 
data in isolation. Subsequently, the nighttime light characteristics 
within each urban functional zone were calculated at the county level. 
This was achieved by combining urban functional zoning data with 
nighttime light using a spatial overlay tool (i.e., nighttime light in
dicators considering urban functional zoning). To facilitate comparison 
with the SDGSAT-1 data, the same operation was applied to the NPP- 
VIIRS nighttime light product.

Fig. 3. Urban functional zoning in Guangdong.

Fig. 4. Poverty estimation using nighttime light and urban functional zoning.
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3.3. Random forest

Random forest is a powerful machine learning technique that can 
accurately perform data regression and classification tasks, as well as 
address missing values (Chen et al., 2021a; Hu et al., 2022; Niu et al., 
2020). The random forest model is based on multiple decision trees, 
each constructed independently, which allows for the effective solution 
of high-dimensional and nonlinear problems by combining all the de
cision trees. Therefore, it can effectively handle missing data, non- 
equilibrium conditions, and multicollinearity in the dataset. It offers 
advantages such as resistance to overfitting, fast computation, and the 
ability to achieve usable results without fine-tuning parameters. In 
several poverty estimation comparison studies, random forest has out
performed other machine learning models (Chen et al., 2025; Muñetón- 
Santa and Manrique-Ruiz, 2023; Yin et al., 2021; Zheng et al., 2024).

In this study, a series of random forest models were constructed to 
identify the nonlinear relationship between the MPI (dependent vari
able) and nighttime light characteristics (SDGSAT-1/NPP-VIIRS) (inde
pendent variables). A tenfold cross validation rule was employed to 
examine the effectiveness of these models. This operation was iterated 
ten times, and the mean validation metrics of different models were 
calculated to identify the optimal combination of independent variables. 
To assess the model’s predictive capability and generalization perfor
mance, five metrics, including correlation coefficient, average absolute 
error, root mean square error, relative absolute error, and relative 
square root error, were used.

4. Results

4.1. MPI

The KMO score is 0.846, and the significance of Bartlett’s assessment 
is less than 0.05. These results suggest that there is a moderate to high 
correlation between the variables, which makes them suitable for 
principal component analysis. The associated weighting outcomes are 
presented in Table 3.

Accordingly, the county-level MPIs in Guangdong Province were 
calculated using Eq. (1). To provide a more illustrative representation of 
the geographical distribution of poverty conditions, a natural break rule 
(Jenks) was employed to categorize the MPI values as five levels: very 
low (0.00–0.20), low (0.21–0.25), moderate (0.26–0.35), high 
(0.36–0.45), and very high (0.46–0.8) (Fig. 5). Specifically, a lower MPI 
level indicates a more severe poverty condition. In accordance with the 
findings of previous studies, the counties with a very low MPI level were 
classified as impoverished counties, and the same applies to the poverty 
level (Pan and Hu, 2018; Xu et al., 2021b; Yin et al., 2021).

The MPI results are found to be consistent with the actual poverty 
condition. In particular, the peripheral counties in Guangdong Province 

are facing greater challenges in combating poverty. The impoverished 
counties were typically situated in the eastern and northern parts of this 
province, including Maoming, Yunfu, Zhaoqing, Yangjiang, Shaoguan, 
and Heyuan, which are geographically more remote. In contrast, the 
more developed counties clustered in Guangzhou, Shenzhen, and 
Foshan, which are the cores of Guangdong’s socioeconomic 
development.

4.2. Poverty estimation based on nighttime light and urban functional 
zoning

For the sake of clarity, the nighttime light indicators calculated 
without urban functional zoning are referred to as “basic indicators” 
hereafter. First, a correlation analysis was conducted between all in
dicators and the MPI to exclude those that did not exhibit a significant 
correlation. Second, a multicollinearity diagnosis was performed on the 
remaining basic indicators, which resulted in the exclusion of those with 
significant multicollinearity (VIF > 10).

To test the hypothesis that the basic indicators are significantly 
correlated with the MPI, a Pearson correlation analysis was conducted. 
The null hypothesis (no correlation, ρ = 0) was evaluated using a two- 
tailed significance test. Fig. 6 illustrates the outcomes of the hypothe
sis testing for the correlation between the selected basic indicators and 
the MPI. The Pearson correlation analysis revealed a significant corre
lation between all basic indicators and the MPI, thereby allowing us to 
reject the null hypothesis (ρ = 0) at the 5 % significance level.

After performing multicollinearity diagnosis and correlation anal
ysis, the retained basic indicators were combined with each single 
functional zoning-based nighttime light indicator. The performance of 
these different combinations was quantified through tenfold cross vali
dation (Table 4). The results demonstrate that the models considering 
the following five additional indicators performed better than the model 
using only the basic indicators.

First, the “sum of pixel light values” can depict the degree of socio
economic development at night and shows a strong correlation with 
poverty conditions. Second, the “median of pixel light values” is less 
susceptible to the influence of outliers and provides a robust measure of 
central tendency. This makes it an effective tool for capturing the 
disparity between wealth and poverty. Third, the “mode of pixel light 
values” reflects the most common brightness levels and thus reveals the 
type of socioeconomic activity that dominates this region. Fourth, the 
“number of light pixels” is correlated with population and economic 
size, reflecting the coverage of socioeconomic activities. Fifth, the “local 
Moran index” measures the heterogeneity of the spatial distribution of 
light brightness, which is also a key indicator of impoverished counties. 
Notably, compared with the “average light index” that reflects the 
average brightness, the “sum of pixel light values” and “number of light 
pixels” can better capture the light distribution characteristics within 
different functional zones. Our results show that the correlation co
efficients of the models considering the “sum of pixel light values” and 
“number of light pixels” are as high as 0.9463 and 0.9450, respectively.

The five high-performance indicators derived from the above 
screening were subsequently combined in pairs (Table 5). Results show 
that the model combining the basic indicators with the “sum of pixel 
light values” and “number of light pixels” indicators achieves the highest 
accuracy. Specifically, a region may exhibit a high total light value 
concentrated in a limited number of pixels (e.g., urban cores), while a 
large number of light pixels may indicate broader spatial coverage of 
economic activities (e.g., suburban areas). A moderate total light value, 
accompanied by an abundance of light pixels, may indicate dispersed 
moderate development. Conversely, a high total light value with sparse 
light pixels could signify centralized development. The combination of 
these two indicators enables the model to simultaneously capture both 
the overall intensity and spatial coverage of nighttime illumination. 
Consequently, this combination achieves a correlation coefficient that is 
0.0158 higher than the result obtained using only the basic indicator.

Table 3 
Weighting for socioeconomic indicators.

Indicator Attribute Weight

Gross regional product 
Percentage of secondary and tertiary industries 
Density of companies and enterprises 
Medical and health institutions 
Years of schooling 
Density of scientific, educational, and cultural service 
facilities 
Housing area per capita 
Road density 
Average house price 
Density of living and leisure service facilities 
Density of transportation service facilities 
Average slope 
Average terrain relief 
Average rainfall

þ

þ

þ

þ

þ

þ

- 
þ

þ

þ

þ

- 
- 
þ

0.0989 
0.0576 
0.0844 
0.0781 
0.0638 
0.0687 
0.0551 
0.0751 
0.0802 
0.0683 
0.0744 
0.0687 
0.0721 
0.0541

Z. Chen et al.                                                                                                                                                                                                                                    Remote Sensing of Environment 329 (2025) 114925 

6 



Linear regression analysis was performed to examine the association 
between the model’s predicted outcomes and the MPI. Fig. 7a presents 
the scatter plot and regression line (y = 0.8002×+ 0.0515, R2 = 0.8767) 
for the model using only SDGSAT-1 basic indicators. The high R2 value 
demonstrates a strong alignment between model predictions and MPI 
values, indicating an accurate representation of actual poverty 
conditions.

For the optimal model identified through tenfold cross validation, 
which combines the SDGSAT-1 basic indicators with the “sum of pixel 
light values” and “number of light pixels” indicators, Fig. 7b shows 
improved performance (y = 0.7750× + 0.0547, R2 = 0.8949). This 

model exhibits a stronger explanatory power for the variations in the 
MPI, accounting for approximately 89.49 % of the changes. These results 
further validate the statistically significant correlation between the 
combined model’s predictions and the MPI. It indicates that the com
bined model, which contains more comprehensive nighttime light in
formation, aligns better with the actual situation.

To enhance the clarity of the optimal model (integrating SDGSAT-1 
basic indicators, the “sum of pixel light values”, and the “number of 
light pixels”), a SHAP (Shapley Additive Explanation) value analysis was 
conducted. As illustrated in Fig. 8, the three most influential positive 
indicators are the “average value of pixel light values” (SHAP value =

Fig. 5. Spatial distribution of MPI level in Guangdong.

Fig. 6. Correlation heatmap with Pearson’s r and significance levels (* p < 0.05, ** p < 0.01).
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0.02241), “sum of pixel light values in the commercial zone” (SHAP 
value = 0.01788), and “sum of pixel light values” (SHAP value =
0.01548). These indicators collectively reflect the overall economic 
conditions and highlight areas of robust development. In contrast, the 
“sum of pixel light values in the public management and utilities zone” 
(SHAP value = 0.00859), “number of light pixels in the public man
agement and utilities zone” (SHAP value = 0.00810), and “sum of pixel 
light values in the residential zone” (SHAP value = 0.00793) compen
sate for the relatively low nighttime light values in these functional 
zones, thereby effectively capturing their daytime economic activity 
levels. This integrated spatiotemporal analysis enables the model to 
effectively interpret both daytime and nighttime economic patterns, 
thereby enhancing the clarity of poverty estimation.

For further comparison, the NPP-VIIRS data were also utilized to 
estimate poverty conditions in Guangdong Province. All steps were 
identical to those described above for the SDGSAT-1 data. The results 
presented in Tables S2 and S3 further confirm the validity of the com
bination of the basic indicators, the “sum of pixel light values”, and 
“number of light pixels”.

5. Discussion

5.1. Comparison of poverty estimation results

To further validate our method, a spatial comparison between the 
outcomes derived from the nighttime light and the MPI was conducted 
(Fig. 9). The results were reclassified in accordance with the MPI levels 
depicted in Fig. 5, and counties with values below 0.2 were considered 

Table 4 
Results of combining basic indicators with each single functional zoning-based 
nighttime light indicator (SDGSAT-1).

Combining 
basic 
indicators 
with the 
following 
functional 
zoning-based 
indicator

Correlation 
coefficient

Average 
absolute 
error

Root 
mean 
square 
error

Relative 
absolute 
error (%)

Relative 
square 
root error 
(%)

– 0.9342 0.0362 0.0482 36.3673 35.9438
Sum of pixel 

light values
0.9463 0.0338 0.0457 33.9339 34.1121

Number of 
light pixels

0.9450 0.0302 0.0458 30.3055 34.1383

Local Moran 
Index

0.9432 0.0332 0.0458 33.3027 34.1586

Mode of pixel 
light values

0.9383 0.0358 0.0468 35.9778 34.9232

Median of 
pixel light 
values

0.9366 0.0357 0.0480 35.8438 35.7864

Minimum of 
pixel light 
values

0.9329 0.0363 0.0486 36.4173 36.2555

Variance of 
pixel light 
values

0.9322 0.0364 0.0497 36.5301 37.1129

Average light 
index

0.9312 0.0356 0.0495 35.7766 36.9047

Average value 
of pixel light 
values

0.9312 0.0356 0.0495 35.7766 36.9047

Maximum of 
pixel light 
values

0.9304 0.0362 0.0502 36.2905 37.4314

Standard 
deviation of 
pixel light 
values

0.9292 0.0363 0.0510 36.4265 38.0573

Range of pixel 
light values

0.9291 0.0369 0.0504 37.0475 37.5693

Note (same below): The first row shows the results obtained using only the basic 
indicators. The numbers in bold indicate that the results are superior to those 
obtained using only the basic indicators. Basic indicators refer to those calcu
lated using only nighttime light data, while functional zoning-based indicators 
are calculated by integrating nighttime light data with urban functional zoning 
data.

Table 5 
Results of combining basic indicators with multiple functional zoning-based 
nighttime light indicators (SDGSAT-1).

Combining 
basic 

indicators 
with the 
following 
functional 

zoning-based 
indicators

Correlation 
coefficient

Average 
absolute 

error

Root 
mean 
square 
error

Relative 
absolute 
error (%)

Relative 
square 

root error 
(%)

– 0.9342 0.0362 0.0482 36.3673 35.9438
Sum of pixel 

light values 
&  

Number of 
light pixels

0.9500 0.0311 0.0443 31.2270 33.0876

Number of 
light pixels 

&  
Local 

Moran Index

0.9476 0.0301 0.0465 30.2585 34.6855

Median of 
pixel light 
values &  

Local 
Moran Index

0.9467 0.0340 0.0471 34.1653 35.1382

Sum of pixel 
light values 

&  
Local 

Moran Index

0.9447 0.0328 0.0472 32.9131 35.2194

Number of 
light pixels 

&  
Median of 
pixel light 

values

0.9446 0.0307 0.0464 30.8255 34.5934

Mode of pixel 
light values 

&  
Local 

Moran Index

0.9433 0.0325 0.0466 32.5916 34.7313

Number of 
light pixels 

&  
Mode of 

pixel light 
values

0.9420 0.0320 0.0470 32.1080 35.0535

Sum of pixel 
light values 

&  
Mode of 

pixel light 
values

0.9408 0.0332 0.0478 33.3008 35.6890

Sum of pixel 
light values 

&  
Median of 
pixel light 

values

0.9402 0.0343 0.0483 34.4575 36.0206

Mode of pixel 
light values 

&  
Median of 
pixel light 

values

0.9341 0.0360 0.0498 36.1308 37.1894
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impoverished counties. Overall, the impoverished counties recognized 
via our method are broadly consistent with the results derived from the 
MPI. The discrepancies between the two are typically distributed in the 
northern and western parts of Guangdong. Specifically, the impov
erished counties that were predicted to be non-impoverished were 
mainly Qujiang, Yangxi, and Xinxing, while the non-impoverished 
counties that were predicted to be impoverished were mainly Leizhou, 
Xingning, and Meixian.

The calculation of the MPI is highly dependent on reliable statistical 
data. Although statistical yearbooks provide valuable data for socio
economic analyses, they are limited by their update frequency and sta
tistical units. In economically developed regions with impoverished sub- 
regions, these limitations may result in an incomplete and potentially 
inaccurate estimation. In contrast, nighttime light data, as one of the 
informative indicators for measuring socioeconomic activities at a fine 
scale, better capture the differences in human activities at night. Addi
tionally, the incorporation of functional zoning-based indicators is ad
vantageous for reflecting the spatial heterogeneity in economic 
activities and social services across various urban functional zones. For 
example, industrial zones may exhibit low nighttime brightness due to 
limited operations at night but generate significant economic output 
during the day. Residential and public management and utilities zones 
(e.g., schools, hospitals), which typically have lower nighttime light 

intensity but are critical for quality of life, align with MPI dimensions 
such as education and health. Our functional zoning-based indicators (e. 
g., “sum of pixel light values in the industrial zone”) complement these 
daytime economic activities. Consequently, the use of these indicators 
enables the indirect capture of crucial information on daytime socio
economic activities, thereby facilitating a more comprehensive poverty 
estimation.

Among the four methods, the results derived from the combination of 
the SDGSAT-1 basic indicators with the functional zoning-based in
dicators exhibited the greatest consistency with the MPI. For instance, 
Fogang was incorrectly identified as an impoverished county in all three 
other results. In fact, Fogang exhibits spatial mixing of industrial and 
residential zones in some regions. In the model using NPP-VIIRS basic 
indicators, the “sum of pixel light values”, and “number of light pixels”, 
the benefits of functional zoning were undermined by the coarse reso
lution of NPP-VIIRS, which hindered effective identification of mixed 
land use patterns. Conversely, the model using only SDGSAT-1 basic 
indicators can leverage its 10 m resolution to detect small-scale light 
variations. However, this model lacks functional zoning information, 
making it difficult to distinguish low-brightness industrial zones from 
actual impoverished regions. Similarly, the model using only NPP-VIIRS 
basic indicators tends to misclassify Fogang’s scattered public service 
facilities as impoverished regions due to their low nighttime brightness, 

Fig. 7. Regression between the model’s predicted outcomes and the MPI: (a) using only SDGSAT-1 basic indicators; (b) using SDGSAT-1 basic indicators, the “sum of 
pixel light values”, and “number of light pixels”.

Fig. 8. SHAP values of the model using SDGSAT-1 basic indicators, the “sum of pixel light values”, and “number of light pixels”.
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leading to incorrect classifications.
Furthermore, the poverty level results obtained through the above 

four methods were compared (Fig. 10). In all four results, there is a 
noticeable decrease in poverty level from the center to the periphery of 
Guangdong Province, with the northern part of the province exhibiting a 
relatively low poverty level. The results obtained without considering 
the functional zoning-based indicators (Fig. 10a and Fig. 10c) were 
unable to identify the impoverished counties in Maoming. In compari
son, the results including the functional zoning-based indicators 
(Fig. 10b and Fig. 10d) were more consistent with the results of the MPI, 
which further supports the reasonableness of our proposed method.

Our further investigation has revealed that the inclusion of urban 
functional zoning can alleviate this limitation associated with high- 
resolution nighttime light data. Functional zoning-based indicators 
effectively differentiate brightness characteristics across economic sec
tors, thereby enabling adequate reflection of daytime activity areas. 
After considering these new indicators (Fig. 9b and Fig. 10b), some areas 
that were initially misclassified as impoverished counties were cor
rected. For counties with concentrated nighttime light in specific areas, 
the remaining parts with low nighttime light can be characterized by the 
“number of light pixels” and “sum of pixel light values” within different 
functional zones. These two additional indicators provide essential in
formation on the extent of light coverage and the sum of light values for 
each functional zone. Nevertheless, for large areas with concentrated 

development (e.g., Dongguan City without subordinate counties), the 
aforementioned issues may still lead to misclassification of poverty 
levels.

Finally, the performance of the SDGSAT-1 data with the NPP-VIIRS 
data regarding poverty estimation was compared. Without considering 
functional zoning-based indicators, SDGSAT-1 (Fig. 10a) identified 
fewer counties with medium, high, and very high poverty levels than 
NPP-VIIRS (Fig. 10c). For example, the results from SDGSAT-1 showed 
lower poverty levels in Panyu District of Guangzhou and Guangming 
District of Shenzhen. The high resolution of SDGSAT-1 enables it to 
capture finer nighttime light variations, but it may also be oversensitive 
to low-brightness areas (e.g., parks, industrial zones). In contrast, NPP- 
VIIRS suffers from blooming effect, and its low resolution leads to 
widespread overestimation of brightness values (e.g., urban center 
brightness diffusing to suburban areas), thereby underestimating the 
number of impoverished counties. This discrepancy indicates that while 
SDGSAT-1’s high resolution enhances the accuracy of poverty identifi
cation, its sensitivity to low-light areas requires auxiliary calibration 
with functional zoning data. NPP-VIIRS, despite its high temporal res
olution and low computational cost, is limited in mixed-functional zones 
due to insufficient spatial precision. Therefore, the combination of these 
two data sources offers a more comprehensive perspective for poverty 
estimation.

After incorporating functional zoning-based indicators, NPP-VIIRS 

Fig. 9. Comparison between MPI and the results of nighttime light: (a) using only SDGSAT-1 basic indicators; (b) using SDGSAT-1 basic indicators, the “sum of pixel 
light values”, and “number of light pixels”; (c) using only NPP-VIIRS basic indicators; (d) using NPP-VIIRS basic indicators, the “sum of pixel light values”, and 
“number of light pixels”.
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identified more impoverished counties accurately (Fig. 9c and Fig. 9d), 
with the correlation coefficient of its model increasing by 0.0129. 
However, NPP-VIIRS still struggles to delineate the edges between dark 
and light regions precisely due to inherent limitations (Li et al., 2024b; 
Ma et al., 2014; Ni et al., 2021; Zhang et al., 2015). Therefore, its 
improvement in correlation coefficient was 0.0029 lower than that of 
SDGSAT-1. These results indicate that functional zoning indicators 
enhance poverty estimation for both datasets. Nevertheless, the models 
demonstrated higher performance when integrated with the higher- 
resolution SDGSAT-1 data.

5.2. Advantages and shortcomings of this study

The above comparisons support the validity of the methodology 
proposed in this study. Compared with the approaches that rely solely on 
nighttime light data, this methodology has carefully accounted for 
regional spatial heterogeneity. The reasonableness of the poverty esti
mation results can be improved by incorporating urban functional 
zoning-based indicators. In summary, the proposed methodology offers 
two key advantages. First, the use of high spatiotemporal resolution 
SDGSAT-1 nighttime light data provides a solution to the delays and 
coarse units of statistical data. Second, the inclusion of urban functional 
zoning information allows for a more accurate distinction between the 

light brightness characteristics of different economic sectors, thereby 
providing a more comprehensive approach to poverty estimation.

In light of our findings, three policy recommendations can be made 
for the alleviation of poverty. First, it is imperative that local govern
ments accurately identify regions experiencing relative poverty and 
devise differentiated poverty reduction strategies based on regional 
characteristics. In particular, it is essential to strengthen the sustainable 
development and risk-resistance capacity of economically disadvan
taged regions, including those in the eastern, western, and northern 
parts of Guangdong. For impoverished counties with single-functional 
zoning, priority should be given to investing in infrastructure for char
acteristic industries. Second, local governments need to implement a 
long-term dynamic tracking system to enhance the responsiveness and 
accuracy of poverty alleviation policies. For example, in similar poverty 
zones identified by the model (e.g., Liannanyaozu in Qingyuan and 
Ruyuanyaozu in Shaoguan), the effectiveness of characteristic industries 
(e.g., eco-tourism) in poverty alleviation can be evaluated by integrating 
changes in nighttime light intensity with industrial income data. Finally, 
local governments can establish an early warning mechanism for 
poverty trends in accordance with the methodology of this study. By 
identifying poverty clusters through modeling results and spatial auto
correlation analysis, emergency industrial funds can be allocated regu
larly. Implementing early intervention measures based on poverty 

Fig. 10. Comparison of poverty level: (a) using only SDGSAT-1 basic indicators; (b) using SDGSAT-1 basic indicators, the “sum of pixel light values”, and “number of 
light pixels”; (c) using only NPP-VIIRS basic indicators; (d) using NPP-VIIRS basic indicators, the “sum of pixel light values”, and “number of light pixels”.
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estimation results can prevent the phenomenon of “returning to 
poverty” in Guangdong Province.

It should also be acknowledged that the poverty estimation model 
developed in this study has some shortcomings, as the urban functional 
zoning data employed is solely based on the 2018 mapping results. First, 
the data on transportation areas could not be incorporated into the 
model due to a considerable number of missing values. It would be 
beneficial for future studies to obtain more complete information. Sec
ond, using county as the unit of analysis may not fully reflect the dif
ferences in sub-regional development within the county. Finally, the 
acquisition and updating of functional zoning data face significant 
challenges (Hu et al., 2024; Tang et al., 2022; Xiong et al., 2025; Zhang 
et al., 2025). These challenges include high costs and processing com
plexities for high-resolution data, which results in delayed updates, ill- 
defined boundaries, and incomplete spatial coverage. A finer unit, 
such as grid-scale resolution, could be employed in future attempts to 
gain a more complete picture of poverty conditions. This could be 
complemented by more timely data (e.g., mobile phone signaling data) 
to quantify daytime population mobility and economic activity hotspots.

6. Conclusions

This study aims to explore the potential of integrating high- 
resolution SDGSAT-1 data with urban functional zoning data to esti
mate poverty. It addresses two critical challenges: the insufficient 
timeliness of traditional socioeconomic statistical data and the limited 
ability of coarse-resolution remote sensing products to characterize 
spatial heterogeneity. The results show that the model combining 
functional zoning-based indicators of “sum of pixel light values” and 
“number of light pixels” demonstrated the highest degree of 
effectiveness.

Specifically, this research contributes to the literature in two distinct 
aspects. First, the SDGSAT-1 data with a resolution of 10 m were 
employed for poverty estimation, which can strengthen the reliability of 
the fitting outcomes. The high temporal resolution of these data pro
vides an opportunity for long-term dynamic monitoring on a large scale, 
which is beneficial for accurately alleviating poverty and promoting 
urban-rural integration. Second, an integrated use of nighttime light and 
urban functional zoning effectively distinguishes the nighttime light 
characteristics across diverse economic sectors. This novel combination 
can account for regional spatial heterogeneity and offer an ideal basis for 
the accurate identification of impoverished regions. In conclusion, our 
findings have great potential to support fine-scale poverty estimation 
over a wide area. Although county-scale models may exhibit biases in 
large areas with concentrated development, future studies will involve 
acquiring more timely data (e.g., mobile phone signaling data), adopting 
a more refined grid scale, and expanding the study area to urban ag
glomerations such as the Yangtze River Delta and Beijing-Tianjin-Hebei 
region. These efforts aim to provide valuable insights for targeted 
poverty alleviation, enhance poverty monitoring, and support evidence- 
based policy-making.
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